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A COMPREHENSIVE MATHEMATICAL MODEL OF THE CARDIOVASCULAR SYSTEM
UNDER TIME-DEPENDENT ACCELERATION STRESS

Xavier J. R. Avula
Department of Engineering Mechanics

University of Missouri-Rolla
Rolla, Missouri 65401

ABSTRACT

In this study a comprehensive mathematical model of the

cardiovascular system under time-dependent accelerations is developed.

Recently developed high performance aircraft would expose the human

body to acceleration injury if appropriate life-supporting devices are

not incorporated in the design. To aid in the construction of desirable

life support systems for aerospace maneuvers, the deformation of the

arterial and venous segments under dynamic fluid loads caused by blood

pooling during Gz acceleration are calculated. Linearized Navier-Stokes

equations for blood flow and equations of large elastic deformation theory

for blood vessel deformations are used. The resulting nonlinear partial

differential equations are solved numerically. The model presented here

consists of a closed-loop hydrodynamic system including the heart pump,

compartments of large arteries and veins in the upper and lower body, and

a baroreceptor feed back mechanism. To verify the model aortic pressure

is calculated for an experimental deceleration profile. A satisfactory

agreement between the theory and experiment is found.

NOMENCLATURE

A = Material constant in the strain energy function

B = Material constant in the strain energy function

B = (with sub- and superscripts) = Surface metric tensor
AIR TT -r
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(ASC)

!,)Pro-,': ;  '  ': ,,. .. I nd isll str- " eJ -
DJUTr *flimited.

Chief, 7. £cal Intontwminl,*10 4

i i ]



F = Body force

f = Acceleration

G = Determinant of the covariant metric tensor G

g = Determinant of the covariant metric tensor gij

G.j = Covariant metric tensor for reference coordinates of thedeformed state

Gij = Contravarient metric tensor for reference coordinates of
the deformed state

g.. z Covariant metric tensor for reference coordinates of the
g undeformed state

gij = Contravariant metric tensor for reference coordinates of
the undeformed state

2ho = Wall thickness of the blood vessel

I1iI2,13 = Strain invariants

L = Length of blood vessel element

n = Stress resultant tensor

p = pressure

Q = Flow rate

R= Internal radius of the blood vessel

r = Radial coordinate

t = time

u,w = Radial and axial fluid velocity components

W = Strain energy function

z = Axial coordinate

r = Christoffel symbol of the second kindBp

= Shear rate in blood

= Stretch ratio

p = Coefficient of viscosity of blood

v - Kinematic viscosity of blood

p = Mass density of blood vessel

po = Mass density of blood

T = Stress tensor

* = A function of strain energy

P A function of strain energy

-2-



Subscripts and Superscripts

i, j, k = 1, 2, 3

r. s =1, 2

ci,19 1 2

INTRODUCTION

The human body is well accustomed to the earth's force of

gravity, but recent space age developments have occasioned its exposure

to the hazards of high and abnormal gravitational fields, which are

manifested in the form of vibration, impact, weightlessness, and positive,

negative, forward, backward, and angular accelerations that are beyond

its tolerance levels. Abnormal accelerations on the human body are known

to cause headache, abdominal pain, impairment of vision, hemorrhage, and

fracture depending upon the severity and kind' 3 The cardiovascular

system in being central to the homeostasis of the organism is extremely

susceptible to hostile changes in environmental force. The design of

protective devices, which are expected to provide acceleration tolerance

for the organism during aircraft and spacecraft maneuvers, must take into

consideration the response of the cardiovascular system to acceleration

stress. Therefore, a thorough understanding of the system and its structure-

function relationship in an abnormal force environment is essential to any

effort directed to overcome the acceleration trauma.

The prohibitiveness of actually subjecting the human body to abnormal

accelerations to gain knowledge of the cardiovascular system's response is

obvious. The alternative is to develop a mathematical model and to investigate

the response of the system. The need for mathematical models and the analysis

of model features for prediction of system performance are well recognized

in view of the cost and risk involved in testing the original system.

Thortialanlyesar etrmeyhepfl orevlutig h-3-atv



injury potential for various acceleration functions, in guiding experi-

mental investigations, and in developing and understanding protective

measures. Mathematical procedures also provide the basis for establishing

precise dynamic and physiological scaling laws needed to translate experi-

mental data obtained with various species into meaningful results for

humans.

There is no dearth of mathematical models of the cardiovascular

system in the scientific literature. Womersley4 and Noordergraaf5 presented

a mathematical analysis of some aspects of the cardiovascular system by using

a lumped parameter model. Taylor,6 Kenner,7 and Attinger et al. 8 used

distributive parameter models to analyze pressure - flow relationships in

arteries and veins. It is generally believed that a lumped parameter model

is superior to the distributive one in the evaluation of overall cardio-

vascular system performance. Beneken and DeWt 9 characterized a large

analog model of the entire human circulatory system in the form of approxi-

mately 40 equations. Rigorous mathematical fonnulations and extensive

physiological information, including the factors affecting contractility

of the myocardium, the effect of Intrathoracic and abdominal pressure

changes on the venous conductance and the ventricular distention, the

baroreceptor reflex control of the cardiac pump and vascular resistance,

the autoregulatlon in various vascular beds, and capillary fluid shift

and stress relaxation phenomena were introduced into the model. It has

been demonstrated that the model provides quick solutions for parametric

sensitivity tests. Guyton and Coleman 10 presented an analog model of

long-term circulatory regulation and emphasized the integration of the

long-term autoregulation of the systemic vascular system into the basic

scheme as the most powerful control mechanism for tissue homeostasis.

Pennock and Attinger 11 proposed a mathematical model to analyze the

f-4-



overall performance of the oxygen transport system. This model was

represented by six equations and used to describe oxygen transfer and

transport and normal performance. The changes on the interaction of

subsystems and on optimization with respect to flexibility and maximal

limits of performance were examined by altering various parameters.

McLeod 12 proposed a physiological simulation benchmark experiment (PHYSBE)

to economize on programmning efforts and to establish bases for a comparison

of various types of computer models of circulation. Sagawa 13,14 described

the overall circulatory regulation and the mechanical properties of the

cardiovascular system in the control of circulation. Camill 15studied

the response of the human cardiovascular system to whole-body sinusoidal

vibrations by using an open-loop analog model of the standing and sitting

man. Boyers et al. 16 simulated the steady state response of the human

cardiovascular system with normal responses to change the posture, blood

loss, transfusion, and autonomic blockage. Collins et al. 17presented a

dynamic, mathematical simulation of the cardiopulmonary system. Several

articles related to blood flow in arteries have appeared in the book by

McDonald'8. An elastic tube theory of blood flow has been treated by
19ahi 20  21

Lambert1  and Skalak and Sahs. Kivity and Collins presented a

viscoelastic tube model for aortic rupture under decelerative forces.

Rudinger 22studied the effect of shock waves on mathematical models of
aorta for better understanding of the behavior of the actual aorta.

Most of the above modeling efforts deal with electrical analogs

of the cardiovascular system in which various parameters are introduced in

terms of resistances, impedances, and capacitances. Because the measured or

postulated values of these parameters are variable and their representation
under high-g conditions is speculative, errors of large magnitude are

likely to creep into the model. Therefore, an analysis that is based

purely on the original properties of the cardiovascular elements coupling

a -5-



the fluid-flow, deformation of the vascular walls, and the material

properties of the blood vessels and surrounding tissue is expected to

yield a better mathematical model.

To understand the blood flow characteristics in the arterial

system, the knowledge of the material properties of the arterial wall

23 24 25is essential. Bergel , Fung , Demiray and Vito have utilized mathe-

matical models of the constitutive properties of the arterial tissue to

determine the stresses in the arterial walls. In the present study, the

strain energy function given by Demiray and Vito25 for an arterial wall

specimen has been used in determining the aortic pressure that is compat-

ible with large deformation of the aorta and the associated flow under

acceleration stress.

The present study also considers the effect of acceleration on the

mircrocirculation. Microcirculation under normal conditions was investigated

by Prothero and Burton26 , Whitmore27, Gross and Aroesty 28 , Gross and

Intaglietta2g , Skalak30 and Fung 31 who presented various theories of flow

in the capillary bed connecting the arteries and veins.

Several experimental investigations on the effects of acceleration

stress on the human body have been performed at the USAF School of Aerospace

Medicine at Brooks Air Force Base, Texas. Burton32 subjected miniature

swine to Gz acceleration to study its effects on the organism and extra-

polated the results to human beings. Parkhurst, et a133 conducted experi-

ments on human tolerance to high +Gz forces. Leverett, et al. 34 investigated

the physiologic response to high sustained acceleration stress. Peterson,

et al. 35 studied the cardiovascular responses during and following exposure

to +Gz forces In chronically instrumented anesthetized dogs. Burton and

MacKenzie 36 determined the extent of heart pathology as a function of

acceleration stress.

-6-



DESCRIPTION OF THE PHYSICAL MODEL

Because the cardiovascular system consists of several components,

it would be too complicated to handle all of them in a general model.

Although it would be desirable to include the behavior of each cardio-

vascular component under acceleration stress in the total modeling effort,

certain components can be lumped together to simplify the analysis and

still preserve the character of the system. In the proposed model, five

elastic chambers containing blood are arranged in a closed loop, and a

mathematical analysis is made to calculate the fluid shift under acceler-

ation stress. The five elastic chambers are: 1) arteries of the thorax

and the lower body, 2) veins of the thorax and the lower body, 3) arteries

of the upper body, 4) veins of the upper body, and 5) heart and lungs.

A schematic of the elastic reservoirs arranged in a closed loop is shown

in Fig. 1. This physical system is then subjected to +Gz acceleration.

The elastic reservoirs are considered highly deformable, and the theory

of large elastic deformations is applied to the calculation of their

expansion under acceleration stress. The Navier-Stokes equations are

used to determine the fluid velocity into and out of the chambers with

proper boundary conditions to match the wall motion.

MATHEMATICAL MODELING

A. Equations of Fluid Motion

* The geometry of the elastic tube containing blood in motion is

shown in Fig. 2. Let r, e, z be the cylindrical polar coordinates and

let u, v, and w bet the velocity components in the corresponding directions.

Assuming axial symmetry in flow and tube deformation, the linearized Navier-

Stokes equations for the flow of blood can be written as:

-7-
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au = .+ 2r- + + (a1

aw I R + v( f- +1 aTr + ) + g(t) (2)t Po z a r zr
0

where p is the pressure, v is the kinematic viscosity, po is density of

blood and g(t) is the body force per unit mass caused by the acceleration.

The continuity equation is

au u aw -= (3)
r+ r az

The above equations are nondimensionalized using a typical length, Ro,

which is the initial (undeformed) radius of the aorta, and U, the average

velocity of blood in the aorta. Introducing the new quantities

t* = r* -  z* z w,RF' R ' U
0 0 0

_ _UR °

u = g* = U Re = (4),"u = *i, ~ ' ' -=

the equations of motion and the continuity equation in terms of the newly

defined variables become

au* +p*+1 a2 u* 1 au* + 32u* u*
Sar +  rza* - j--r) (5)

aw* ap* + 1 aw* 2  + 1 aw* + a2w* **
t az* Re (arw + r* ar* az*) + g(t) (6)

au* u* aw* ()
ar * - =0

Deleting the "stars" for simplicity, the governing equations in the

I" dimensionless form will become

.au + 1 1 au + au 2
at ar l a + r T + B

-9-
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2w- ?kP + L(2 +1 i W

a.u + R + -L"w 0 ( 0 )r r z

The boundary and initial conditions are

dRI
u = d- at r = R t>0

w = 0 at r = R1  t >0 (11)

w=l atz=0 t>0

where RI is the inside radius of the blood vessel in the deformed state.

B. Equations of Motion for Thin-Walled Elastic Tube:

The theory of large elastic deformations is utilized to describe

the time-dependent deformation of the blood vessels. In view of the

published results on blood pooling and the consequent cardiac insufficiency,

the application of large deformation theory appears necessary. Demiray and

Vito25 have previously used this theory to calculate the deformation of

arteries.

The undeformed and deformed cylindrical tubes are shown in Fig. 3.

Let r, 0, z represent a point in the wall of the undeformed tube, and R, e,

z in the deformed tube. r,, r2 are inside and outside radii, respectively,

of the undeformed tube, and RI, R2 those of the deformed tube. Axial stretch

of the tube is neglected because of tethering caused by the surrounding tissue.

Assuming the material of the blood vessels to be homogeneous, incompressible,

and isotropic, the stress at any point can be written as:

T = *gij + B + PGiJ (12)

-10-
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where * = 2(aW/aI1), , = 2(3W/812), B = 11g - g g Grs' P is a

scalar function which represents a hydrostatic pressure, W is the strain

energy function, 11 and 12 are the strain invariants, and gij, gij' G

and Gii are the contravariant and covariant metric tensors37'38 . The

indices i and j take the values 1, 2, and 3. The equations of motion

are given by:

TJ 11 i + PwFi = Pwf i (13)

where 11 denotes covariant differentiation, Pw is the density of the

vessel wall, F is the body force, and f is the acceleration. Let us

neglect the body force on the vessel wall in comparison to its effect

on the fluid flowing in the cylindrical tube. Performing the covariant

differentiation on the remaining part of the equation of motion we get

.iJ~i +i r i ir pf
r ir + rir T = (14)

where rijk represent the Christoffel symbols of the second kind
37'38.

It has been shown that for a biomaterial, a reasonable strain energy

function as shown in Ref. 25 is

B A(12 - 3) (15)

in which A and B are material constants. Defining the circumferential

stretch ratio X = R/r, the stresses in the r, e, z directions can be

expressed as

11 1 A(I2-3)
T P + B(1 + T) e (16)

2 222 A(1 2"3)

R2 22  P + B(1 + 2 )e (17)

-12-



A(I2-3)
33 1 + 2 ( 2-3)(8

3 3=P + B(-xI + X2) e (18)

Substitution of the above equations and the appropriate Christoffel

symbols in Eq. (14) gives the equation of motion in the form

aI 3) A(12"3 ei 2 - (19)

R P + B(1 + eI + (-" x)eA( -- Pw

The incompressibility condition leads to:

R- R12 = r2 - r12 (20)

and

__t  RI2  dR1  2 R1 2 R d2R
a_ 2 R_ R1 R1 1R

P -R -t (21)

With p1,P2 denoting the pressure on the inside and outside wall,

respectively, of the blood vessel, the use of the boundary conditions,

T 11 = -P1(t) at R = RI and -11 : -P2(t) at R = R2, substituting Eq. (21)

into Eq. (19) and integrating yields

d 2 dR 2 R2 1 R22
P1(t) - P2(t) = R 1  In + (t- Pw n + - )]

dt 1F Tt1

2 1X2 +x2  _A(x2 +- - 2)

-B 2 • dX (22)

It must be recognized that the relationship 12=1 + X2 + 1/X2 has been

used to obtain Eq. (22).

The following dimensionless quantities are introduced into Eq. (22):

p P RI R2  tB w 23)V-. .r --. , , . o
!Po u  R I* t t U B* * (23)

-13-



Then the equation of motion in the radial direction becomes

R*d2Rl1*  I (R2*
(P l * - p2*) = p* 1 in (7 2)

wR* dt*1

+ ,.* dR* 2 -- 1 R2 2(24 
)+ w, t*') [In F-* + YZ -, 1](4

2 2X2  1+X2 A(X,2 + 1/X - )dX
- B* 3

If the "stars" are dropped for convenience, Eq. (24) can be written as:

d2R R2  d 2 R2  ,2
d2R1 R2 dR 1  2 1R22

pl(t) - P2(t) = PwRI R n [1n 1+ - - 1)]
dt 1 1 1(25)

X 2  A(X 2 + I 2  2)

-B f X -3 e d 
}1

The initial conditions are:

At time t = to, R = R0 , dR1/dt = u, radial velocity of fluid.

In the above derivation, it must be noted that only the radial

displacements of the blood vessels are considered significant since the

axial displacements are prevented by tethering of the vessels to the

surrounding tissue.

C. Equations of Left Ventricular Contraction

In view of the large volume changes of the left ventricle between

the systole and the diastole, the theory of large elastic deformation is

used to analyze the pumping action of the heart. In first approximation,

the components of the pulmonary circulation and the left ventricle are

lumped together and the system is treated as a highly deformable sphere

undergoing radial deformation of the left ventricle by using a strain

energy function of the type represented in Eq. (15).

-14-



The undeformed and deformed configurations of a spherical chamber

are shown in Fig. 4. Let a point located by r, 0, * in the undeformed
sphere be displaced to a new location R, 0, * in the deformed sphere.
Eqs. (12-15) in the previous section, being general, are valid for the

deformation of the sphere also. However, the stresses are expressed

in the form

11 p+BeA(12 - 3)

Be A(I2 3).22= R~. + R- i 11X +x ) (6

22

sin 2

where X = R/r and 12 = x4 + 2/X2. The equation of motion in the radial

direction is

a ( -+2B A(I 2-3) )  2B A(12-3) 1 4 A 2) (27)(p + e (2))+ A2  4.=(7

The incompressibility condition leads to

2 dR 2 R d2R

Substituting Eq. (28)into(27) and noting the boundary conditions

T 11 = -Pl(t)

22 (29)
ST = -P2(t)

and integrating with respect to R, the equation of motion can be put

in the form:

-15-
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p1(t) - p2 (t)

f2 2B A(X4 + 2/ 3) ( 3 + 1) dX

+ pR 2 d 
2 R 1 dR1 2

t d2 ( - R,, + 2pRV (-F) 2)

pR14 dR 2 (30)

2 -1) (~ -

Using the dimensionless variables described in Eq. (23) the nondimensional

form of the equation of motion becomes:

P1* - P2* =

-2 2 1+1 eA(4 + 2/A2  3)
2B* 2 R )

+dR (R*5 R14' Adt 2

dt

+dR* 1 1
c~* 1 2

p*R* 4  dR1 . 2 1 1

R R 4 (31)
1 R2

Deleting the "stars" for convenience, the equation of motion can now be

put in the form:

P1(t) - P2(t)

X2 1 A(X4 + 2/X2  3)
-2B (I + --T e -1



+ oR2 d2R1

d (t 1 2dR 2 1 1

R1
4  dR1 2 1- 12)

R 1 R1

The initial conditions are:

At time t = t0 , R1 = Ro , dR1/dt = uR, a time function which depends upon

the venous return. It must be noted that the transmural pressure across

the myocardium in Eq. (32) is not the same as the pressure difference in

Eq. (25).

For a complete solution Eqs. 8, 9, 10, 25 and 32 must be simultaneously

solved with the appropriate initial and boundary conditions in conjunction

with a reasonable baroreceptor control mechanism.
p.

D. Baroreceptor Reflex Control

The baroreceptor control of the systemic arterial pressure is

accomplished by a closed loop regulator which continuously monitors the

systemic pressure through baroreceptors located in the carotid sinus and

in the aortic arch 39. A typical steady-state relationship between the

input pressure (feedback) and the output pressure (regulated systemic

arterial pressure), as described by Taylor 40 , is shown in Fig. 5. Since

it has been observed in several cardiovascular system experiments under

acceleration stress that the response of the baroreceptor reflex mechanism

begins in G-8 seconds after the pressure change, it is reasonable to use

* the steady-state curve of Fig. 5 for model response under high sustained

acceleration. For short duration, impact type accelerations this curve

would be unsuitable.

-17-
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E. Effect of Acceleration on Microcirculation

The blood vessels of microcirculation are extraordinarily small,

and their typical dimensions are of the order of microns. Under normal

circumstances, the velocity of the blood in the microcirculation is 1 mm/sec

and the Reynolds number is of the order 0(10"3), which is sufficiently

small so that the Stokes flow approximations are applicable. Neglecting

the inertial effects and assuming that the stream lines are nearly parallel,

the dimensionless equation of fluid motion in the axial (z) direction becomes

2 a a2w +

5T az I~e r ar --)+gt
r z

which can be rearranged to read

Rw _ Re (2k) + (' .2 1aw + 2w) + Re g(t) (34)

r z

In the earth's natural gravitational field, the dimensionless g, as given

in Eq. (4), is of the order 0(10-2), and with the effect of Re 0(10 "3) in

the last term Re g(t) in Eq. (34) becomes physiologically insignificant,

being of the order 0(10'). We estimate that the effect of acceleration

on microcirculation per se can be safely neglected up to 100 g. However,

the pressure of the blood pooled in the arteries and veins can affect the

flow rate in the small vessels. For this reason it is necessary to

determine a relationship between the pressure gradient and the flow rate

in the small blood vessels.

For the flow of a Newtonian fluid in a uniform tube Szymanski41 showed

that the flow would be fully developed if vt/D 2 > 1, where t - time,

- kinematic viscosity, and D - tube diameter. An extension of this

criterion to microcirculatlon yields va/D 2 > I for flow to be quasi-steady,

where At is the smallest characteristic time of the unsteadiness in flow.

-19-
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According to Burton42, At =0.1 sec; using v = 0.04 Stokes, one finds

that the diameter D must be greater than 600p (microns) for any significant

effect of unsteadiness. Since, in microcirculatlon the diameters of blood

vessels are much less than 600p, changes in flow due to unsteadiness

become entirely negligible. On this basis Benis43 argued that the effect

of unsteadiness on non-Newtonian flow could also be neglected. Thus, the

use of steady-flow equations can be justified for microcirculation.

For steady capillary flow, the flow rate through a circular tube

can be expressed by

Q 21rJ rw dr (35)

where Q = flowrate, R = tube radius, and w = blood velocity. Integration

by parts of the right hand side yields

Q = 7T Rd(rW) - R r2 (d) dr (36)

The first integral on the right hand side of Eq. (36) is zero. In the

second integral the domain of integration can be divided irto two regions:

a cone of unsheared fluid extending to radius Ry, and the annular region

bounded by the unsheared fluid and the tube wall. Then,

Q = f y r F) dr - n r2 ()dr (37)

0 IR y

The first term on the right hand side in Eq. (37) which represents the

core integral is zero. By changing the variables from r to T in the

second term as suggested by Merrill et. al. 44, Eq. (37) can be written as

87 Tw 2.J T2 dT (38)(AP/L)'3
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where L a length of the capillary

AP = pressure drop

T = shear stress

= shear rate.

The shear stress and the shear rate are related by an empirical equation
T1 / 2 = Ty1/2 + 11/2 .1/2 (39)

in which T is the yield shear stress, and 1/2 is a constant which

represents the slope of the Casson plot relating the viscometric parameters

of blood. In Poiseuille's flow p becomes the blood viscosity. Substitution

of Eq. (39) into Eq. (38) and integration yields

rR4(Ap/L) 4 1/2 R712 (AP/L)1 2  2 Ty 3  40 R)

8u - 7 v -p 21(AP/L)3 +  3 (40)

which is valid under the assumption that the flow is steady, laminar and

incompressible, and blood is homogeneous. In the above equation, 'y and u

are known constants; then plots of Q vs. AP/L for capillaries of various

radii can be easily constructed. An example of this relationship is shown

in Fig. 6.

RESULTS AND DISCUSSION

The system of equations (8), (9), (10), (15), (25) and (32)

constitute the basic hydrodynamic model in this study. These equations

are nonlinear and coupled and therefore a closed-form solution cannot be

found. They were solved numerically on a digital computer by a finite

difference scheme. The numerical data for arterial segments were taken

from Westerhof 4 5 and are presented here in Table I. Although the arterial

segments were presented as a series of elastic tubes of constant radii

which changed stepwise distally from the aorta, a tube of slight taper was

considered in the solution to avoid the difficulties presented by discon-

tinuities in radii.
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Table I. Numerical Data on Arterial Segments

Length Internal Wall Volume
Name of Artery At radius Thickness Q = nr2 At

(cm) r h (cm3 )
(cm) (cm)

Aorta ascendens 2.0 1.47 0.164 13.571
Aorta ascendens 2.0 1.44 0.161 13.028
Arcus aorta 2.0 1.12 0.132 7.881
Arcus aorta 3.9 1.07 0.127 14.027
Aorta thoracalis 5.2 0.999 0.120 16.303
Aorta thoracalis 5.2 0.675 0.090 7.443
Aorta thoracalis 5.2 0.645 0.087 6.796
Aorta abdominalis 5.3 0.610 0.084 6.196
Aorta abdominalis 5.3 0.580 0.082 5.601
Aorta abdominalis 5.3 0.548 0.078 5.000
A.iliaca communis 5.8 0.368 0.063 2.467
A.iliaca externa 5.8 0.290 0.055 1.532
A.iliaca externa 2.5 0.290 0.055 0.660
A.profundus 6.3 0.255 0.052 1.287
A.profundus femoris 6.3 0.186 0.046 0.685
A.femoralis 6.1 0.270 0.053 1.397
A.femoralis 6.1 0.259 0.052 1.285
A.femoralis 6.1 0.249 0.051 1.188
A.femoralis 6.1 0.238 0.050 1.085
A.femoralis 7.1 0.225 0.049 1.129
A.poplitea 6.3 0.213 0.048 0.898
A.poplitea 6.3 0.202 0.047 0.807
A.poplitea 6.3 0.190 0.046 0.705
A.tibialis posterior 6.7 0.247 0.051 1.284
A.tibialis posterior 6.7 0.219 0.049 1.009
A.tibialis posterior 6.7 0.192 0.046 0.776
A.tibialis posterior 6.7 0.165 0.044 0.573
A.tibialis posterior 5.3 0.141 0.041 0.331
A.tibialis anterior 7.5 0.130 0.039 0.398
A.tibialis anterior 7.5 0.030 0.039 0.398
A.tibialis anterior 7.5 0.130 0.039 0.398
A.tibialis anterior 7.5 0.130 0.039 0.398
A.tibialis anterior 4.3 0.130 0.039 0.228
A.anonyma 3.4 0.620 0.086 4.106
A.subclavia 3.4 0.423 0.067 1.911
A.subclavia 6.8 0.403 0.066 3.969
A.axillaris 6.1 0.364 0.062 2.539
A.axillaris 5.6 0.314 0.057 1.734
A.brachialis 6.3 0.282 0.055 1.574
A.brachialis 6.3 0.266 0.053 1.400
A.brachialis 6.3 0.250 0.052 1.237
A.brachialis 4.6 0.236 0.050 0.804
A.ulnaris 6.7 0.215 0.049 0.972
A.ulnaris 6.7 0.203 0.047 0.867
A.ulnaris 6.7 0.192 0.046 0.776
A.ulnaris 3.7 0.183 0.045 0.389
A.radialis 7.1 0.174 0.044 0.675
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Table I. (Cont.)

Length Internal Wall Volume
Name of Artery Ak radius Thickness Q = wr2 AX

(cm) r h (cm3 )
(cm) (cm)

A.radialis 7.1 0.162 0.043 0.585
A.radialis 7.1 0.150 0.042 0.502
A.radialis 2.2 0.142 0.041 0.139
A.interossea volaris 7.9 0.091 0.028 0.205
A.coelica 1.0 0.390 0.064 0.478
A.gastrica sin. 7.1 0.180 0.045 0.723
A.lienalis 6.3 0.275 0.054 1.497
A.hepatica 6.6 0.220 0.049 1.003
A.renalis 3.2 0.260 0.052 0.679
A.mesenterica sup. 5.9 0.435 0.069 3.507
A.mesenterica inf. 5.0 0.160 0.043 0.402
A.carotis com. sin. 5.9 0.370 0.063 2.537
A.carotis com. sin. 5.9 0.370 0.063 2.537
A.carotis com. sin. 5.9 0.370 0.063 2.537
A.carotis com. sin. 3.1 0.370 0.063 1.333
A.car. int. sin. 5.9 0.177 0.045 0.581
A.car. int. sin. 5.9 0.129 0.039 0.308
A.cerebri anterior sin. 5.9 0.083 0.026 0.128
A.car. ext. sin. 5.9 0.177 0.045 0.531
A.car. ext. sin. 5.9 0.129 0.039 0.308
A.car. ext. sin. 5.9 0.083 0.026 0.128
A.car com. dextra 5.9 0.370 0.063
A.car. com. dextra 5.9 0.370 0.063 2.537
A.car. com. dextra 5.9 0.370 0.063 2.537
A.car. ext. dextra 5.9 0.177 0.045 0.580
A.car. ext. dextra 5.9 0.129 0.039 0.308
A.car. ext. dextra 5.9 0.083 0.026 0.127
A.car. int. dextra 5.9 0.177 0.045 0.581
A.car. int. dextra 5.9 0.129 0.039 0.308
A.cerebri anterior dex. 5.9 0.083 0.026 0.127
A.vertebralis 7.1 0.188 0.046 0.788
A.vertebralis 7.7 0.183 0.045 0.810

The following constants were used in the solution for arterial deformations:

-R= 1.47 an

U = 11.9 cm/s
h3

Pw = Po 1.05 gr/cm3

v = 0.038 Stoke

A = 0.8

B = 11.35 x 104 dynes/cm2
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The flow chart of the solution technique for the comprehensive

model is presented in Fig. 7. Assuming the pressure variation in the

heart chamber as a cosine function varying between 80 and 120 mm*1g, the

entrance velocity into the aorta was calculated from the solution of

Eq.(32). Coupling the linearized Navier-Stokes equations and the

equations of motion for elastic tube deformation a solution was obtained

for pressure and radius at various locations downstream from the aorta.

The volume change can be calculated as a function of time from the

computed radii.

Two acceleration profiles were used in the solution of the model

proposed here. First, an impact type acceleration which was experi-

46mentally determined by Hanson and shown in Fig. 8 was used and the

aortic pressure was calculated. This pressure is shown in Fig. 9 in

comparison with the pressure measured in the thoracic aorta of a beagle
I-,wdog in response to the same acceleration profile. An exact quantitative

comparison between the two pressure profiles is not possible because they

were calculated for two different species having different physical

dimensions and material properties. However, the qualitative comparison

is quite satisfactory. Second, an acceleration profile measured during

the flight of an F-14 aircraft was used to compute both radius and pressure

in a segment of the aorta. The acceleration profile and the corresponding

radius and pressure are shown in Figures 10, 11 and 12, respectively.

The radius and pressure results of Figs. 11 and 12 were obtained for the

50-sec time domain indicated in Fig. 10. There are no pressure and radius

data available for the F-14 acceleration profile for comparison. Such

data is difficult to obtain noninvasively and there are understandably

numerous restrictions against invasive measurements.
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It should be apparent from Eqs.(25) and (32) that the blood

flow response will depend upon the values assigned to the material

constants A and B. To develop the total cardiovascular system model

the values of A and B for all segments of arteries and veins in the

body must be known. Such information is not available at the present

time. Also, the numerical data on venous segments are not available

for the complete venous system. However, in the present study it has

been demonstrated that it is possible to construct an acceptable

mathematical model of the cardiovascular system under acceleration stress

by considering the mechanical parameters such as the physical dimensions.

fluid properties and material properties of the blood vessels.

It is well known that finite-difference numerical procedures

are time consuming and difficult to formulate for complex geometries

of realistic shapes of the left ventricle and curves and branches in

arteries and veins. Further study is recommended to formulate the model

by finite element techniques by which complex geometries can be easily

handled and computations can be more economically performed.
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